learning
Search
Share
π
learning
μ‘°κ°
μ² ν
Table
Search
Vector Normμ μλ―Έ
μ νλμ
Vector Normμ μλ―Έ
μ νλμ
Normμ μ’ λ₯μ λ°λ₯Έ μ±μ§
μ νλμ
Normμ μ’ λ₯μ λ°λ₯Έ μ±μ§
μ νλμ
Dot product
μ νλμ
Dot product
μ νλμ
쑰건λΆνλ₯
νλ₯
쑰건λΆνλ₯
νλ₯
The Number of Network parameters
The Number of Network parameters
λ² μ΄μ¦ μ 리
νλ₯
λ² μ΄μ¦ μ 리
νλ₯
DLμμ λ―ΈλΆμ μ νλ κ²μΌκΉ
λ―ΈλΆ
DLμμ λ―ΈλΆμ μ νλ κ²μΌκΉ
λ―ΈλΆ
νλ ¬μ μλ―Έ
μ νλμ
νλ ¬μ μλ―Έ
μ νλμ
Neural Networkμ μλ―Έ
DL
μ νλμ
Neural Networkμ μλ―Έ
DL
μ νλμ
3B1B L.A. ch1~2
μ νλμ
3B1B L.A. ch1~2
μ νλμ
3B1B μ ν λ³ν, νλ ¬μ κ³±
μ νλμ
3B1B μ ν λ³ν, νλ ¬μ κ³±
μ νλμ
3B1B Nonsquare matrices as transformations between dimensions
μ νλμ
3B1B Nonsquare matrices as transformations between dimensions
μ νλμ
3B1B νλ ¬μ
μ νλμ
3B1B νλ ¬μ
μ νλμ
3B1B L.A. ch10~11
μ νλμ
3B1B L.A. ch10~11
μ νλμ
3B1B L.A. ch3
μ νλμ
3B1B L.A. ch3
μ νλμ
3B1B L.A. ch5
μ νλμ
3B1B L.A. ch5
μ νλμ
3B1B μνλ ¬ μ곡κ°
μ νλμ
3B1B μνλ ¬ μ곡κ°
μ νλμ
SVDμ κΈ°ννμ μλ―Έ
SVDμ κΈ°ννμ μλ―Έ
λ€νΈμν¬ ν ν΄λ‘μ§ (Network topology)
λ€νΈμν¬ ν ν΄λ‘μ§ (Network topology)
λ€νΈμν¬ λͺ λ Ήμ΄
Network
λ€νΈμν¬ λͺ λ Ήμ΄
Network
μΈν°λ· νλ‘ν μ½ μ€μνΈμ κ³μΈ΅ ꡬ쑰
Network
μΈν°λ· νλ‘ν μ½ μ€μνΈμ κ³μΈ΅ ꡬ쑰
Network
리μ€νΈμμ μμ(νμ) nκ°μ κ°μ κ°μ Έμ€κ³ μΆμλ
리μ€νΈμμ μμ(νμ) nκ°μ κ°μ κ°μ Έμ€κ³ μΆμλ
CNN
CV
CNN
CV
μ»΄ν¨ν°κ° μ΄λ―Έμ§λ₯Ό ν΄μνλ λ°©λ²
μ»΄ν¨ν°κ° μ΄λ―Έμ§λ₯Ό ν΄μνλ λ°©λ²
Competition Strategy
Detection
Competition Strategy
Detection
SSH : vscodeμ μλ² μ°κ²°νκΈ°
Network
SSH : vscodeμ μλ² μ°κ²°νκΈ°
Network
Serving: FastAPI (1)
Serving
Serving: FastAPI (1)
Serving
Serving: Backend
Serving: Backend
λ©΄μ μμ μ§λ¬Έ 리μ€νΈ
λ©΄μ
λ©΄μ μμ μ§λ¬Έ 리μ€νΈ
λ©΄μ
MongoDB (with Atlas)
DB
MongoDB (with Atlas)
DB
Wireshark
Wireshark
[ROS] νλ‘μ νΈ λλ ν 리 ꡬμ±μ μν μ¨μ½
ROS
[ROS] νλ‘μ νΈ λλ ν 리 ꡬμ±μ μν μ¨μ½
ROS
[ROS] κΈ°λ³Έ κ°λ μκ³ κ°κΈ°
ROS
[ROS] κΈ°λ³Έ κ°λ μκ³ κ°κΈ°
ROS
[ROS] LiDAR μ 보λ₯Ό μ΄λ»κ² μ²λ¦¬ν κΉ?
ROS
[ROS] LiDAR μ 보λ₯Ό μ΄λ»κ² μ²λ¦¬ν κΉ?
ROS
[LiDAR] Velodyne VLP-16
νλμ¨μ΄
LiDAR
[LiDAR] Velodyne VLP-16
νλμ¨μ΄
LiDAR
[λͺ¨λν κ°μ°] ChatGPT
ChatGPT
[λͺ¨λν κ°μ°] ChatGPT
ChatGPT
[Prompt] μ¬λ¬κ°μ§ ν
Prompt
[Prompt] μ¬λ¬κ°μ§ ν
Prompt
[SLAM] λͺ¨λμ SLAM
SLAM
[SLAM] λͺ¨λμ SLAM
SLAM
[EIRIC κ°μ°] GPT, μμ±λͺ¨λΈμ΄ κ°μ Έμ¬ λ―Έλ
Prompt
[EIRIC κ°μ°] GPT, μμ±λͺ¨λΈμ΄ κ°μ Έμ¬ λ―Έλ
Prompt
[ChatGPT] νκΈ μ¬μ©μ νκ³λκΈ°?
Prompt
[ChatGPT] νκΈ μ¬μ©μ νκ³λκΈ°?
Prompt
[SLAM] LeGO-LOAM (1): μμ μ
SLAM
[SLAM] LeGO-LOAM (1): μμ μ
SLAM
[OPIc]
English
[OPIc]
English
[SLAM] LeGO-LOAM (3): Gridmap μ΅μ ν
[SLAM] LeGO-LOAM (3): Gridmap μ΅μ ν
μ² νμ νμ
μ² ν
μ² νμ νμ
μ² ν
[Detection] YOLOv5 in Jetson Xavier
Detection
Jetson Xavier
[Detection] YOLOv5 in Jetson Xavier
Detection
Jetson Xavier
μμΈμ μλ Macμμ μ²μμ μλ Jetsonμ μ¬μ©νκΈ°
Jetson Xavier
Network
SSH
μμΈμ μλ Macμμ μ²μμ μλ Jetsonμ μ¬μ©νκΈ°
Jetson Xavier
Network
SSH
[SLAM] LeGO-LOAM (2): μΌλ‘ λΆν° 2D Gridmapμ μΆμΆνμ
SLAM
ROS
[SLAM] LeGO-LOAM (2): μΌλ‘ λΆν° 2D Gridmapμ μΆμΆνμ
SLAM
ROS
[ROS] λΉλ λ° κ΅¬μ±
ROS
[ROS] λΉλ λ° κ΅¬μ±
ROS
Computer Vision λΆμΌ
CV
Computer Vision λΆμΌ
CV
μ νμ μ¬μ μ μ² νμ μ¬μ , μν¬λΌν μ€
μ² ν
μ νμ μ¬μ μ μ² νμ μ¬μ , μν¬λΌν μ€
μ² ν
Load more